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I. INTRODUCTION

Whether or not quantum computing will become reality
will at some point depend on whether we can implement
quantum computation fault-tolerantly. This would imply that
even though the quantum circuitry and storage are faulty, it is
possible by error-correction to perform error-free quantum
computation for an unlimited amount of time while incurring
an overhead that is polylogarithmic in time and space, see
f1–7g. For this “software” solution that uses concatenated
coding techniques, an error probability threshold of the order
of 10−4–10−6 per qubit per clock-cycle has been given for
the simplest error models, meaning that for an error probabil-
ity below this threshold fault-tolerant quantum computation
is possible. These estimates heavily depend on error model-
ing, the efficiency of the error-correcting circuits, and the
codes that are used. Different and potentially better estimates
are possible, see, for examplef8–10g. Another solution to the
fault-tolerance problem proposed by Kitaev is to make the
hardware intrinsically fault-tolerant by using topological de-
grees of freedom such as anyonic excitations as qubitsf11g.

In Refs. f3,4g the threshold result for fault-tolerance is
derived for various error models, including ones with expo-
nentially decaying correlations. However, this general model
of exponentially decaying correlations does not make direct
contact with a detailed physical model of decoherence. Such
a physical model of decoherence starts from a Hamiltonian
description involving the environmental degrees of freedom
and the computer “system” degrees of freedom.

Starting from such a Hamiltonian picture it was argued in
a paper by Alickiet al. f12g that fault-tolerant quantum com-
putation may not be possible when the environment of the
quantum computer has a long-time memory.

In this paper we carry out a detailed threshold analysis for
some non-Markovian error models. Our findings are not in
agreement with the views put forward in the paper by Alicki
et al., that is, we can derive a threshold result in the non-
Markovian regime if we make certain reasonable assump-
tions about the spatial structure and interaction amongst the
environments of the qubits. The results of our paper and the
previous results in the literature are summarized in Sec. IV
of this paper. In Sec. I A we introduce our notation and our
assumptions on the decoherence model. In Sec. I B we intro-
duce our measure of error or decoherence strength which we
motivate with a small example. Then in Sec. I C we prove

some simple lemmas that will be used in the fault-tolerance
analysis and in Sec. I D we discuss the overall picture of a
fault-tolerance derivation, in particular the parts of this deri-
vation that do not depend on the decoherence model. Then in
Sec. II we fill in the technical details to obtain the threshold
result expressed in Theorem 1. In Sec. III we generalize our
decoherence model to incorporate more relaxed conditions
on the spatial structure of the bath and we discuss further
possible extensions. In Sec. IV we give an overview of all
known fault-tolerance results including ours and in Sec. V
we discuss several physical systems in which our analysis
may be applicable.

A. Notation and explanation of the decoherence model

We use the following operator norm: iAi
=maxici=1iAucli where i ucli;ici=Îkc ucl. The following
properties will be used:iA+Biø iAi+iBi, iUi=1 if U is
unitary, andiABiø iAi iBi. An operatorH that acts on sys-
tem qubiti or qubitsi and j sand potentially another quantum
systemd is denoted asHfqig or Hfqi ,qjg. A unitary evolution
for the time-intervalt to t+ t0 is denoted asUst+ t0,td. t0 is
the time it takes to do an elementarysone or two qubitd gate.
The identity operator is denoted asI ande denotes the base
of the natural logarithm. We will also use the trace-norm
denoted byiAi1=Tr ÎA†A and the classical variation dis-
tance between probability distributionsP and Q: iP−Qi1
=oiuPsid−Qsidu.

The following assumptions have been shown to be neces-
sary for fault-tolerance and thus we keep these assumptions
in our analysis.

s1d It is possible to operate gates on different qubits in
parallel.

s2d We have fresh ancilla qubits at our disposal. These
ancilla qubits are prepared off-line in the exact computa-
tional stateu00̄ 0l and they can be used in the circuit when
necessary. They function as a heat-sink which removes en-
tropy from the computation.

In Fig. 1sad three types of quantum systems are sketched
that differ in function and in the amount of control that we
can exert over them. First, there is R, for quantum registers,
that we can control and use for our computation. Second,
there is A, for ancillas, which are used for error-correction
and fault-tolerant gate construction during the computation.
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The systems R and A taken together are denoted as S for
system of which single qubits are denoted by the letter q.
Clean ancilla registers set tou00̄ 0l are added during the
computation and can be removed after having interacted with
s1d other parts of the system S by error-correcting procedures
and s2d the bath B according to some fixed interaction
Hamiltonian.

We will assume that the third system, the bath B, which
interacts with the system and ancillas has a local structure,
illustrated in Fig. 1sbd. We will generalize this model in Sec.
III. Every qubit sq1,q2,q3, . . .d. of the system has its own
bathsB1,B2,B3, . . .d. Only during the time when two qubits
interact their bathssB1 and B2 in the figured can interact. The
idea behind this modeling is that the bath is localized in
space, i.e., is associated with the place where the qubit is
stored. But when qubits interact, they need to be brought
together and so they may share a common bath. In the pic-
ture B1+B2 at time t+ t0 are suggested to be the same baths
that qubits q1 and q2 interacted with at timet, but in general
they may also be different baths. For example, when qubits
q1 and q2 have to be moved in order to interact, they may see
a partially new environment at timet+ t0. This distinction
will not be important in our analysis.

Most importantly, in this model, each bath can have an
arbitrarily long memory; at no point in our derivation will we
make a Markovian assumption. This implies that, for ex-
ample, the bath B1 may contain information about qubit q1 at
time t, then interact with bath B2 at time t+ t0 and pass this
information on to bath B2, etc. The interaction Hamiltonian
of a single qubit qi of the systemsR or Ad with the bath is
given by

HSBfqig = o
k

skfqig ^ Ak, s1d

with the Pauli-matricessk acting on qubit qi andAk is some
Hermitian operator on the bath of the qubit qi which is not
equal to the identityI . During a two qubit gate both qubits

may interact with both baths. For simplicitysseef13gd we
assume that the interaction is of the form

HSBfqi,qjg = HSBfqig + HSBfqjg, s2d

where the bath part of eachHSBfqig is an operator on the
joint bath of qubits qi and qj. We do not care about the
time-evolution of the baths except that it has to obey the
“local bath assumption,” i.e., noninteracting qubits have non-
interacting baths. The systemsregister and ancillad evolution
HRAstd is time-dependent and represents the fault-tolerant
quantum circuit that we want to implement. This evolution is
built from a sequence of one and two qubit gates and, as was
said before,t0 is the time it takes to perform any such gate.

B. Measure of decoherence strength

Our results will depend on the strength of the coupling
HamiltonianHSBfqig. There is an additional freedom in de-
termining HSBfqig, namely we can always add a term
aI Sfqig ^ I B wherea is an arbitrary real constant andI is the
identity operator. This is possible since it merely shifts the
spectrumsseef14gd. Let mi be the eigenvalues ofHSB. With
this freedom we see that

min
a

iHSBfqig + aI Sfqig ^ I Bi = smmax− mmind/2 ; DSBfqig,

s3d

the spectral width of the interaction Hamiltoniansdivided by
2d. Our analysis will apply to physical systems where one
can bound

∀ qi P S, DSBfqig ø l0, s4d

wherel0 is a small constant which will enter the threshold
result, Theorem 1, together witht0, the fundamental gate
time. In what follows we will denoteDSBfqig as DSB or D
assuming that the spectral width is the same for each qubit in
S.

We justify the use of this norm in the following way.
Consider a single qubit coupled to a bath such that both bath
and system Hamiltonians are zero but there exists nonzero
coupling. To what extent will an arbitrary initial state of qu-
bit and bath change under this interaction? We can consider
the minimum fidelity of an initial statecSBs0d with the
evolved state at timet:

Fminstd = min
cs0d

ukcstducs0dlu. s5d

For small timest such thatDSBtøp /2 the minimum fidelity
can be achieved by takingucs0dl=1/Î2sucmaxl+ ucminld
whereucmax/minl are the eigenvectors ofHSB with largest and
smallest eigenvalues. Then we have

Fminstd = cossDtd < 1 − D2t2/2 + O„sDtd4
…. s6d

Note that this fidelity decayincludesthe effects on the bath.
For this reason this fidelity decay overestimates the effects of
decoherence, in other wordsF(rSstd ,rSs0d)ùFmin.

One may compare this fidelity decay with that of other
decoherence processes, for example, the depolarizing chan-

FIG. 1. Schematic representation of the model.sad The system S
consists of a register R of qubits plus ancillas A that can be reset
during the computation. The system S is coupled to the environ-
ment, or bath, B.sbd The decoherence model. Each qubit qi is
coupled to an individual bath Bi. When two qubits interact, they
may interact with one common bath.
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nel E with depolarizing probabilityp. For such a channel we
haveFsuclS,EsuclkcudSd=Î1−p/2 f15g. Thus, loosely speak-
ing, Dt could be interpreted as an error amplitude whose
square is an error probability.

Thus this brief analysis shows that for some initial states
cSBs0d the norm of the interaction Hamiltonian measures ex-
actly how the state changes due to the interaction. Since our
environment is non-Markovian we cannot exclude such bad
initial states, in other words we cannot assume that the de-
coherence is just due to the interactive evolution of an ini-
tially unentangled bath and system.

C. Error modeling tools

The following simple lemma will be used repeatedly in
this paper:

Lemma 1. Let a unitary transformationU=Un¯U1 where
Ui =Gi +Bi and the operatorGi and Bi are not necessarily
unitary. LetU=B+G where we defineB to be the sum of
terms which contains at leastk factorsBi. Let iBiiøe and
thus iGiiø1+e. We have

iBi ø Sn

k
Deks1 + edn−k. s7d

If Gi is unitary, we have

iBi ø Sn

k
Dek. s8d

Proof. We can think aboutU as a binary tree of depthn
such that the children of each node are labeled withGi or Bi
at depthi. We prune the tree in the following way; when a
branch hask factorsBi in its path, we terminate this whole
branch with the remainingUn¯Um. The sum of these termi-
nated branches isB. B can be bounded by observing that
there are s n

k
d terminated branches each of which have

norm at mostiBiikiGiin−k ssince each branch is a sequence of
Gi transformations interspersed withk Bi transformations
followed by unitary transformations. j

It is easy to prove the followingssee also Ref.f16gd.
Lemma 2. Consider a time-intervalft ,t+ t0g and a single

qubit qPS which does not interact with any other qubit in S
at that time. The time-evolution for this qubit is given by
some unitary evolutionUfqg involving its bath B. Let
U0fqg=USfqg ^ UB be the free uncoupled evolution for this
qubit. We can write

Ufqg = U0fqg + Efqg, s9d

whereEfqg is a fault-operator with norm

iEfqgi ø t0iHSBfqgi = t0DSBfqg ø t0l0. s10d

Proof. We drop writing the dependence on qubit q for the
proof. For the qubit evolution in the interval, using the Trot-
ter expansion we can write

U = lim
n→`

Pm=1
n sUS

tmUSB
tm UB

tmd, s11d

whereUK
tm is the time-evolution for K=S, B or coupling SB

during the time-intervaltm of lengtht0/n. Now in this expan-

sion we may writeUSB
tm = I − iHSBt0/n+Ost0

2/n2d and omit
these higher order terms. Let us callGm=US

tmUB
tm and Bm

=−ist0/ndUS
tmHSBUB

tm as in Lemma 1. We thus haveiBmi
ø t0iHSBi /n. Note thatGm is unitary and we have a binary
tree of depthn→` and can use Lemma 8 withk=1. This
gives

iEi = iBi ø t0iHSBi. s12d

j
A similar statement holds when we consider the evolution

of two interacting qubits. We have that

USBfqi,qjg = U0fqi,qjg + Efqi,qjg, s13d

whereiEfqi ,qjgiø2t0DSBfqgø2t0l0.

D. Overall perspective: Good and bad fault-paths

Since the bath may retain information about the time-
evolution and error processes for arbitrary long times we
cannot describe the decoherence process by sequences of su-
peroperators on the system qubits. Instead, there is a single
superoperator for the entire computation that is obtained by
tracing over the bath at the end of the computation. Thus in
our analysis we will consider the entireunitary evolution of
system, bath, and ancillas. At timet=0 bath and ancilla and
system are uncoupled and we may always purify the bath,
i.e., find a pure state in a larger bath Hilbert space which,
when the extra Hilbert space is traced out, yields the desired
mixed state. We can then assume a pure initial product state
for the combined system and bath, SB. The unitary evolution
of the computation consists of a sequence and/or parallel
application of the unitary gatesUfqi ,qjgst+ t0,td and
Ufqigst+ t0,td. Each such gate, say for two qubits, can be
written as a sum of an error-free evolutionU0fqi ,qjgst
+ t0,td and a fault termEfqi ,qjg. Therefore the entire compu-
tation can be written as a sum overfault-paths, that is, a sum
of sequences of unitary error-free operators interspersed with
fault operators. This is very similar as in the fault-tolerance
analysis for Markovian error models, where the superopera-
tor during each gate-timet0 can be expanded in an error-free
evolution and an erroneous evolution so that the entire su-
peroperator for the circuit is a sum over fault-paths.

The main idea behind the threshold result for fault-
tolerance is then as follows, seef4g. There aregood fault-
paths with so-calledsparsenumbers of faults which keep
being corrected during the computation and which lead to
sapproximatelyd correct answers of the computation; and
there arebad fault-paths which contain too many faults to be
corrected and imply acrashof the quantum computer.

Now the goal of our fault-tolerance derivation which is
completely analogous in structure as the one inf4g is to show
the following.

sAd Sparse fault-paths lead to sparse errors in the compu-
tation. This fact uses the formal distinction between faults
that occur during the computation and the effects of these
faults, the errors, that arise due to the subsequent evolution
which can spread the faults. The fact that sparse fault-paths
give rise to sparse errors is due to fundamental properties of
fault-tolerant error-correcting circuitry, namely that there ex-
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ists error-correcting codes and procedures that do not spread
faults too much. It is independent of the choice of decoher-
ence model, and can be applied to any model where one can
make an expansion into fault-paths. See Lemma 3.

sBd Sparse errors give good final answers. This is a tech-
nical result whose derivation may differ slightly in one or the
other decoherence model, but which is intuitively sound for
all possible decoherence models. See Lemma 4.

sCd The norm of the operator corresponding to all bad
nonsparse fault-paths is “small.” This result depends cru-
cially on the decoherence model that is chosen, in particular
the spatial or temporal correlations that are allowed. Second,
it depends on the strength of the errors, that is, only for small
enough strength below some threshold value will the norm of
the bad fault-path operator get small. See Sec. II B.

sAd,sBds,Cd⇒ When thebad operator norm is small, the
answer of the computation is close to what the good fault-
path operator yields which is the correct answer according to
item B. See Lemma 4 and Theorem 1.

Another small comment about our model is the following:
In the usual model for error-correctionssee Ref.f6g in f17gd,
measurements are performed to determine the error-
syndrome or the correct preparation of the ancilla states.
Since we prefer to view the entire computation as a unitary
process, we may replace these measurements by coherent
quantum operations. In the error-correction with measure-
ment procedures it is assumed that faults can occur in the
measurement itself or in the quantum gate that is performed
that depends on this measurement record, but the measure-
ment record by itself is stable since it is classical. If we
replace measuring by coherent action for technical reasons in
this derivation, it is then fair to assume that the qubit that
carries the measurement record is error-free, in other words it
does no longer interact with a bath. This modeling basically
allows the standard fault-tolerance results in item A ex-
pressed in Lemma 3 to carry over in the simplest way to our
model.

II. THRESHOLD RESULT

A. Nomenclature

Let the basic error-free quantum circuit denoted byM0
consist ofN locationsf4g. Each location is given by a triple
shqj ,G,td wherehqj denotes the qubitssone or two at mostd
involved in some gate GsG could beI d at time t in the
quantum circuit. In the following,Efig or Ufig will denote
operators that involve locationi, i.e., if q1 and q2 interact at
location i we will write U0fq1,q2g=U0fig instead of enumer-
ating the qubits. For fault-tolerance one constructs a family
of circuits Mr by concatenation. That is, we fix a computa-
tion codeC ssee definition 15 in Ref.f4gd, for example a CSS
code, encoding one qubit intossayd m qubitsf18g. We obtain
the circuitMr by replacing each location in the circuitM0 by
a block of encoded qubits to which we apply an error-
correcting procedure followed by a fault-tolerant implemen-
tation of G, see Fig. 2. Repeated substitution will give us a
circuit Mr at concatenation levelr.

Essential are the following definitions and a lemma taken
from Ref. f4g which define sparseness of a set of locations
and error-spread of a code:

Definitions from Ref. [4]:
s1d A set of qubits inMr is called an s-block if they

originate from 1 qubit inMr−s. A s-working period inMr is a
time interval which originates from one time-step inMr−s.
An s-rectangle inMr is a set of locations that originate from
one location inMr−s.

s2d Let B be a set ofr-blocks in the circuitMr. An
sr ,1d-sparse set of qubits A in B is a set of qubits in which
for everyr-block in B, there is at most onesr −1d-block such
that the set A in this block is notsr −1,1d-sparse. As0, 1d-
sparse set of qubits inM0 is an empty set of qubits.

s3d A set of locations in ar-rectangle issr ,1d-sparse
when there is at most 1sr −1d-rectangle such that the set is
not sr −1,1d-sparse in thatsr −1d-rectangle. A fault-path in
Mr is sr ,1d-sparse if in eachr-rectangle, the set of faulty
locations issr ,1d-sparse.

s4d A computation code C has spreads if one fault which
occurs in a particular 1-rectangle affects at mosts qubits in
each 1-block at the end of that 1-rectangle, i.e., causes at
mosts errors in each 1-block.

s5d Let AC be the number of locations in a 1-rectangle for
a given code C.

We state the basic lemma about properties of computation
codes which was proved in Ref.f4g swith a correctiond.

Lemma 3 (A: Lemma 8 in [4] with a correction). Let C be
a computation code that can correct 2 errors and has spread
s=1. Consider a computationMr subjected to asr ,1d-sparse
fault-path. At the end of eachr-working period the set of
errors issr ,1d-sparse.

Thus for simplicity we will be using a quantum computa-
tion code that encodes one qubit and can correct two errors
and has spreads=1. We denote the entire unitary evolution
of Mr including the bath asQr. We may writeQr =QG

r +QB
r

whereQG
r is a sum overgood sr ,1d-sparse fault-path opera-

tors andQB
r contains thebad nonsparse terms. A fault-path

operatorESB that issr ,1d-sparse is a sequence of free evolu-
tions U0fig for all locations except that in everyr-rectangle
there is asr ,1d-sparse set of locations where a fault operator
Efig occurs.

Definition 1 (Operators in the interaction picture). Let
U0st2,t1d=USst2,t1d ^ UBst2,t1d be the free uncoupled evolu-
tion of system and bath in the time-intervalft1,t2g. We define
a fault-operatorEst2,t1d in the interaction picture as

Est2,t1d = U0st2,t1dEU0
†st2,t1d. s14d

The interpretation is thatEst2,t1d is the spread of a faultE
that occurs att1 due to the subsequent free evolution.

FIG. 2. Every single or two-qubit gate G in the circuitMr−1 gets
replaced by an error-correcting procedure E followed by a fault-
tolerant implementation of G, Gfaulttolspossibly involving
ancillasd.
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Then it is simple to see the following:
Proposition 1 (Error spread in the interaction picture).

Consider a quantum circuitM. Let U0stF ,tId be the un-
coupled evolution forM. Faults occur at a set of “time-
resolved” locations

T = hsi1,t1d,si2,t2d, . . . ,sik,tkdj,

where i1, . . . ,ik is the set of distinct locations of the faults
and t1, . . . ,tk label the specific times that the faults occur at
the locations. LetESBsTd be a particular fault-path operator
in which at every faulty locationsi ,tdPT we replaceU0fig
by a fault-operatorEfig. We have

ESBsTdU0
†stF,tId = EfikgstF,tkd ¯ Efi1gstF,t1d. s15d

We note that the system part ofESBU0
† is I everywhere ex-

cept for the qubits that are in the causal cone of the faulty
locations, i.e., the qubits to which the errors potentially have
spread.

Proof. This can be shown by inserting I
=U0

†stF ,tidU0stF ,tid in the appropriate places and then using
the definition of fault operators in the interaction picture.j

Now we include error-correction and differentiate be-
tween the ancilla systems A used for error-correction which
may contain noise and the registers R in which the errors
remain sparse. Note that all these ancillas are in principle
discarded after being used, but we may as well leave them
around. LetuKuC be the restriction of the operatorK to vec-
tors in the code-space ofC, i.e., uKuC=KPC wherePC is the
projector on the codespace.

Let us consider a fault-path operatorESB representing a
single faultE at time t on some block that is subsequently
corrected by an error-free error-correcting procedure. Let
uINl be the initial state of the computer, bath and ancillas and
U0stF ,tId be the perfect evolution. We have

ESBuINl = ESBU0
†U0uINl = ESBU0

†ucCstFdl, s16d

whereucCstFdl is the final perfect state of the computer, prior
to decoding and therefore in the code-space.ESB is the se-
quenceU0stF ,tdEU0st ,t0d whereU0stF ,td includes the error
correction operation. In other words, in the interaction pic-
ture, we can write

ESBuINl = EstF,tducCstFdl. s17d

The error-correcting conditionsssee f15g, par. 10.3d imply
that when acting on the code spaceandan ancilla state set to
u00̄ 0l the operatorEstF ,td will be EstF ,td= uI uC ^ sJdAB

whereJ is some arbitrary operator on the ancillasthat re-
ceives the error syndrome in the error-correcting procedured
and bath. In Eq.s17d the final error-free state has all ancillas
set to u00̄ 0l and the system state is in the code-space and
thus the error acts asI on the system.

Similarly, let ESB contain two faults at timest1, t2 that
have not spreadssayd and are then corrected by a perfect
error-correcting procedure. We have

ESBuINl = E2stF,t2dE1stF,t1ducCstFdl. s18d

Let us assume, for example, thatE1 occurs prior to error-
correction andE2 occurs during error-correction. Then due to

the error correctionE1stF ,t1d acts asI on the code space
when the ancilla used for error-correction is set tou00̄ 0l
and acts asJ on this ancilla and the bath. The errorE2 will
not be corrected and may still be presentsbut will not have
spread to more qubits in the block due to the spread proper-
ties of the code that is usedd after error-correction. Thus in
total we can write for this process thatE1stF ,t1d acts asI on
the code space, whereasE2stF ,t2d is an operator that acts on
the code space as at most one error per block.

Alternatively, both faults could occur prior to error-
correcting so they can both be corrected by our code. This
implies that bothE1stF ,t1d andE2stF ,t2d act asI on the code-
space. Note that after the first fault the ancilla will be par-
tially filled si.e., not beu00̄ 0ld but since the code can cor-
rect two errors there is still space to put the second error
syndrome in. However, a third operatorE3stF ,t3d would no
longer act asI on the code-space since the code cannot cor-
rect three errors.

In other words, with these examples we can see how
Lemma 3 can be translated in terms of the sparseness of the
errors in the interaction picture, i.e., the sparseness of places
where they act as nonidentity on the final encoded state of
the register qubits. In the next lemma we need to consider
the effect of such sparse fault-path operatorsESB on the final
state of the computer. This is the state of the computer ob-
tained after fault-tolerant decoding which is as follows. The
fault-tolerant decoding procedure for a single level of encod-
ing takes a code worducl and “copies” sby doing CNOT
gatesd the codewordm times. Then on each “copy” we de-
termine what state it encodes and then we take the majority
of the m answers. This procedure is done recursively when
more levels of encoding are used.

In the fault-tolerant decoding procedure faults can occur
on the code words, i.e., as incoming faults, during the copy-
ing procedures and during the determination of what is en-
coded by the code word. The last procedure will usually be a
conversion from a quantum state to a classical bit string
since this will be the most efficient. This implies that the step
of taking the recursive majority of these bits is basically
error-free since it only involves classical data. In the next
lemma we model this by coherent quantum operations that
output superpositions of decoded bit strings followed by an
error-free measurement that takes the recursive majority of
these bits.

Lemma 4 (B: Sparse faults give almost correct answers).
Let Qr =QG

r +QB
r be the unitary evolution ofMr and let

iQB
r iøe,1/2. Let P0sid be the output probability distribu-

tion under measurement of some set of qubits of the error-
free original computationM0. Let Psid be the simulated out-
put distribution of the encoded computationMr with
evolutionQr. We have

iP0 − Pi1 ø Î2e + 16e. s19d

Proof. The initial state of the computer isuINlRAB
= u00¯0lRA ^ uINBl for some arbitrary stateuINBl. Let U0

r be
the error-free evolution ofMr including the final decoding
operation. Thus letU0

r uINlRAB= uOUT0lR ^ uRESTlAB. Let
QruINlRAB= uOUTlRAB and QB/G

r uINlRAB= uOUTB/GlRAB. We
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will drop the label RAB from now on. The norm ofuOUTGl
will be denoted asiOUTGi. We have

1 = iQruINli ø iQG
r uINli + iQB

r uINli, s20d

so that iOUTGiù1−iQB
r uINliù1−e. On the other hand

iQG
r i=iQr −QB

r iø1+e.
Let G be the set ofsr ,1d-sparse fault-paths. We have

QG
r =oTPGESBsTd whereESBsTd is the fault-path operator of a

sr ,1d-sparse fault-path labeled by location and time index set
T. We can write

uOUTGl = o
TPG

ESBsTdU0
r†uOUT0lR ^ uRESTlAB. s21d

By the arguments above and the fundamental Lemma 3 we
know thatESBsTdU0

† is I everywhere except on asr ,1d-sparse
set of qubits. Letw be the number of output qubits ofM0.
The ideal stateuOUT0lR has the property that all qubits in an
r-block have the same value in the computational basis, i.e.,

uOUT0lR = o
i1,. . .,iw

ai1,. . .,iw
ui1l^mr

¯ uiwl^mr
, s22d

wherem is the number of qubits in a 1-block. The final step
of the computation is a measurement of all output qubits that
takes the recursive majority on the block to get the final
output stringi of lengthw with probabilityPtotsid. We model
this measurement using POVM elementsEk, −okEk= I . Since
not all of thesew output bits may be relevant output bits of
M0, we may use the fact that trace-distance is nonincreasing
over tracingf15g so that

iP0 − Pi1 ø iP0
tot − Ptoti1, s23d

where Ptotskd=Tr EkuOUTlkOUTuRAB and P0
totskd

=Tr EkuOUT0lkOUT0uR. Let us also definePG
tot, the distribu-

tion of outcomes if the state of the computer would be the
normalized stateuOUTG

Nl;uOUTGl / iOUTGi. The triangle
inequality and the properties of the trace-norm imply that

iPtot − P0
toti1 ø iPtot − PG

toti1 + iPG
tot − P0

toti1

ø i uOUTlkOUTu − uOUTG
NlkOUTG

Nu i1 + iPG
tot − P0

toti1.

s24d

Here the first term can be bounded, using the relation of the
trace norm to the fidelityFsc ,fd= ukc uflu f15g, as

i uOUTlkOUTu − uOUTG
NlkOUTG

Nu i1

ø Î1 − FsOUT,OUTG
Nd2

ø Î1 − iOUTGi2 ø Î2e − e2. s25d

Now consider the second trace norm on the right-hand side
of Eq. s24d. We note that all states that are linear combina-
tions of sr ,1d-sparse error sets applied to the state

uk1l^mr
¯ ukwl^mr

will give rise to the measurement outcome
k since we are taking majorities. We can modelEk=Pk where
Pk is the projector onto the space of computational basis
states that give rise to the majority output stringk. Thus we
have

PkuOUTGl = ak1,. . .,kw o
TPG

ESBsTdU0
r †uk1l^mr

¯ ukwl^mr

^ uRESTlAB, s26d

which can be written asak1,¯,kw
QG

r uckl for some normalized
stateucklRAB. This implies that the second term in Eq.s24d
can be bounded as

iPG
tot − P0

toti1 = o
k

uak1,. . .,kw
u2U iQG

r uckli2

iOUTGi2 − 1U
ø o

k

uak1,. . .,kw
u2max

k
U iQG

r uckli2

iOUTGi2 − 1U ø
4e

s1 − ed2 ,

s27d

using the bounding inequalities ofiQG
r i and iOUTGi. All

bounds put together, usinge,1/2, give the result, Eq.s4d.j

B. Step C: Nonsparse fault-paths have small norm

Consider the evolutionQr which can be viewed as a se-
quence of unitary evolutions, one for eachr-rectangle, since
qubits in different rectangles do not interact. The number of
locations inM0 is N. The computationQr is bad when at
least oner-rectangle is bad, or using Lemma 1

iQB
r i ø NiRB

r i iRG
r iN−1, s28d

whereRB
r andRG

r are the good and bad parts of the unitary
evolutionRr for somer-rectangle. The unitarity ofRr implies
that we can boundiRG

r iø1+iRB
r i. In each rectangle we can

view the entire evolution as a sequence of unitary evolutions,
one for eachsr −1d-rectangle. Note that we are again using
the fact that noninteracting qubits have noninteracting baths.
An r-rectangle is bad when there are at least two
sr −1d-rectangles which contain sets of faulty locations
which are notsr −1,1d sparse. This implies, using Lemma 1
again, that

iRB
r i ø SAC

2
DiRB

r−1i2iRG
r−1iAC−2, s29d

where we can use thatiRG
r−1iø1+iRB

r−1i. Whenr =1, RG
1 is a

unitary operation and thusiRG
1 i=1. This recurrence inr is

identical to the one in Lemma 11 in Ref.f4g and thus the
solution and results are the same if we replaceh in Ref. f4g
by l0t0. Thus the critical error threshold value is

sl0t0dc =
1

eACsAC − 1d
. s30d

Here we can observe a difference with the simplest error
model with error probabilityp for which the critical value is
pc=1/s AC

2
d f4g. The dimensionless quantityl0t0 plays the role

of anamplitude, see Sec. V, which implies that this threshold
value may be more stringent than in the simple probabilistic
error modelssee also the critique by Alickif19g on our re-
sultsd. However, we believe that this analysis is too course to
really give information about the value of the threshold. The
fact is that in practice, baths do not have infinite memory
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times since they are coupled to many other degrees of free-
dom. Representing the coupling between bath and system as
a pure coherent evolution was needed in this analysis to deal
with the non-Markovian dynamics; however, we do not ex-
pect this formal procedure to give rise to anoptimal error
threshold.

The idea of the remaining derivation given in Ref.f4g is
to show that whenl0t0, sl0t0dc for large enough concatena-
tion level r, iQB

r iøe for arbitrary smalle. Lemma 4 then
tells how much our quantum computation errs from the
error-free computation. Summarizing we get the following,
as in Ref.f4g.

Theorem 1 (Threshold theorem for local non-Markovian
noise). Let N be the number of locations of an error-free
quantum computationM that outputs samples from a prob-
ability distributionP. There exists a quantum circuitM8 sub-
jected to noise according to the HamiltonianHSB and bath
HamiltonianHB that obeys the “noninteracting qubits have
noninteracting baths” assumption which outputs the prob-
ability distributionP8 such that

iP8 − Pi1 ø e, s31d

whenDSBt0,1/feACsAC−1dg andAC is the number of loca-
tions in a 1-rectangle of ascomputationd code C that can
correct two errors and has spreads=1. The number of loca-
tions in M8 is N polylogN/Îe.

Proof. This follows from the basic results in Ref.f4g and
Lemma 4 and step C above. It was proved in Ref.f4g for l0t0
below the thresholdsl0t0dc in Eq. s30d when the concatena-
tion level r =c1 logflogsN/e8d+c2g+c3, for constantsc1, c2,
andc3 we haveiQB

r iøe8. So we chooseM8=Mr, the com-
putation at this concatenation levelr which implies that
iP8−Pi1øÎ2e8+16e8;e. The number of resourcesstime
and space, related toACd in M8 scales exponentially, i.e., the
number of locations inMr is NAC

r . With the dependence ofr
on N and e8 this implies the polylogarithmic overhead in
terms ofN andÎe. j

III. EXTENSION TO DECOHERENCE MODELS
WITH CLUSTERED QUBITS

In the most general noise model we start with a Hamil-
tonian description of system and bath. We will assume that
such Hamiltonians are 1–system local, that is, the interaction
Hamiltonian between system and bath is a sum of terms each
of which couples asinglequbit to some part of the bath. This
covers many interaction Hamiltonians in systems that are
being considered for quantum computationsseef20gd.

We have seen that basically the only place where the
noise model enters the derivation of fault-tolerance is in Sec.
II B, i.e., the derivation that the total amplitude/probability/
norm for nonsparse fault-paths at concatenation levelr goes
sdoubly exponentially fast inrd to zero when the initial error
strength is below the threshold. Locality of the interaction
Hamiltonian is an importantsand necessaryd ingredient in the
derivation of fault-tolerance since it implies—without any
further assumptions on the structure of the bath or thesnond-
Markovian character of the system—that fault-path operators

with k faults have a norm bounded bys2l0t0dk ssee the Ap-
pendixd. This bound is not strong enough by itself to derive
that iQB

r i becomes arbitrarily small for sufficiently small
l0t0. We find that there are technical and potentially funda-
mental problems in the derivation of step C, for the most
general local Hamiltonian model bothin the Markovian case
as well as in the non-Markovian case. The problems are due
to the fact that all qubits of the computer potentially couple
at a given time to the same bath which was prevented in the
derivation of Theorem 1 by assuming that “noninteracting
qubits have noninteracting baths.” The problem is basically
due to the fact that the unitary evolution of a working period
cannot be written as a product of unitary evolutions for each
rectangle in the working period since different rectangles
may share their bath.

We thus need to consider restricted models that are still
physically very relevant:

Clustered qubits at encoding levelr =1

We can generalize the model in Sec. I A, i.e., noninteract-
ing qubits have noninteracting baths, to one in which a clus-
ter of qubits can share a bath. The model is depicted in Fig.
3. We will assume that qubits that are contained in a
1-rectangle ofMr may share a common bath whereas qubits
in different 1-rectangles do not share a bath. We imagine that
baths are attached to physical locations, so that the interac-
tion regions of differentr-rectangles are physically separate.
This means that from one 1-working period to the next one,
qubits have to be moved around, i.e., qubits that participate
in one 1-rectangle have to be brought together.

Let us for the moment neglect the machinery that is nec-
essary to move qubits around. Then we can observe that the
entire computationMr can be viewed as a sequence of uni-
tary gates each involving a single 1-rectangle. In the
1-rectangle we cannot decompose the evolution as a se-
quence of unitary transformations for each location; but at
this lowest levelr =1 it is simple to derive a bound on the
badpartRB

1 of the unitary operationR1. Given this bound we
can insert it in the previous recurrence of Eq.s29d and deter-
mine a threshold which is the same as before. Here is the
bound onRB

1:
Lemma 5. Let R1=RB

1 +RG
1 be the unitary transformation

of a 1-rectangle whereRB
1 is a sum of nonsparse fault-path

operators, i.e., each such operator contains at least two loca-
tions with faults. Then

iRB
1i ø 2sACt0l0d2 s32d

and iRG
1 iø1+iRB

1i.
Proof. We do a Trotter expansion forR1 as in Lemma 6

and obtain a tree with infinite depth. We combine branches of
the tree in the following way:s1d After a location has be-
come faulty we append the full unitary for the remaining
time of the location ands2d if two faults have occurred at two
different locations we do no longer branch the tree and just
append the entire remaining unitary transformation to that
branch. In this way the norm of every time-resolved branch
with at least two faultsE2+sTd is bounded byiE2+sTdi
ø s2l0t0/nd2. There ares ACt0n/t

2
d such branches and thus
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iRB
1i ø s2l0t/nd2SACt0n/t

2
D ø 2sACt0l0d2. s33d

j
A physical example of this decoherence model is the pro-

posal for scalable ion-trap computationf21g. A few qubits
are stored in an ion-trap where they may share a common
bath. The states of qubits can be moved around to let them
interact. A small cluster of ion-traps may be used to carry out
the fault-tolerant circuits and error-correcting at levelr =1 of
encoding.

The issue of moving qubit states around is not entirely
trivial and will be addressed in detail in a future paperf22g.

IV. OVERVIEW

We would like to summarize the known results, including
the ones in this paper, on threshold results for different de-
coherence models. The simplest model is one in which we
assume that each location undergoes an error with probabil-
ity p and undergoes no error with probability 1−p. This is a
specific example of a Markovian model in which every lo-
cation has its own separate environment, i.e., we have
“Single location baths,” see the upper left entry in Table I.
Generalizations of this model existf3,4g; in these models a
superoperatorSsrd=S0srd+Esrd where S0 corresponds to
the error-free evolution andE to the erroneous part, is asso-
ciated with each location. Again this corresponds to the up-
per left entry in the table. This model has been generalized to
allow for more general correlations in space and time in the
following manner. In Ref.f4g fault-tolerance was derived in
a model where it is assumed that the probability for a fault-
path withk faults is bounded byCpks1−pdN−k whereN is the

FIG. 3. Schematic representation of a decoherence model where clusters of qubits can share a common bath. Logical qubits 1 and 2 are
encoded once in a block of qubits. In the original circuit these qubits first undergo single qubit gatesG1 andG2 and then interact inG3. In
encoded form this implies three 1-rectangles that each take some timet1; these are denoted by the boxes with fat lines in the figure. Each
1-rectangle or cluster has its own bath. These baths may change over time, that is, the bath of cluster 1 may evolve or change and not be the
same as the environment that this block of qubits sees later.

TABLE I. A check sÎd indicates that a fault-tolerance result ex-
ists whereas a question marks?d indicates that it is not known to
exist so farsneither has it been disprovedd. The results for non-
Markovian baths assume a 1–system local interaction Hamiltonian
that can be bounded in norm. They also assume that we can do
two-qubit gates between any two qubits in the circuitsthat is, we do
not take physical locality constraints into accountd. The assumptions
on the structure of the system-bath interaction and the bath Hamil-
tonian are given by the three columns. Single location baths implies
that the interaction and the baths are constrained so that for each
elementary time-intervalsclock-cycled ft ,t+ t0g the following con-
dition is obeyed: qubits that do not interact can only interact with
baths which do not interact, see Fig. 1sbd. Note that the particular
baths with which the qubits interact may change over time. Cluster
location baths is the extension of this model covered in Sec. III
where a cluster of qubits can share the same bath, see Fig. 3. In the
last column there is no constraint on the bath.

Spatial correlations

Single
location
baths

Cluster
location
baths

at r =1
Arbitrary

baths

Temporal
correlations

Markovian within
gate-timet0

Î Î ?

Non-Markovian
with finite memory
time t. t0

Î Î ?

Non-Markovian
with unlimited memory
time

Î Î ?
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total number of locations in the circuitfnote the difference
with Eq. sA1d in the Appendixg. Similarly, in Ref.f3g fault-
tolerance was derived under the assumption that a fault-path
with at least k faults has probability bounded byCpk for
some constantC. Let us call these conditions the exponential
decay conditions. Note in Table I that it is not known
whether one can derive fault-tolerance for a entirely Markov-
ian model butwith extended spatial correlations between the
baths, i.e., for every clock-cycle we have a superoperator that
acts on all qubits of the system; the point is that it is not clear
whether such a superoperator would obey some sort of ex-
ponential decay conditions.

V. MEASURES OF COUPLING STRENGTH
AND DECOHERENCE

In our analysis the role of error amplitude is played by the
dimensionless numberl0t0 which captures the relative
strength of the interaction Hamiltonian as compared to the
system Hamiltonian. It is this quantity,l0t0, that should be
Os10−4d as was determined for some codes. In a purely Mar-
kovian analysis we typically replacel0 by an inverseT2 or
T1 time and this may give a more optimistic idea of the
regime of fault-tolerance. Let us consider a few examples of
decoherence mechanisms and see how sensible it is to use
DSB as a bound for decoherence. A good example of a non-
Markovian decoherence mechanism is a small finite dimen-
sional environment localized in space, for example, a set of
spins nearby the system of interest. An example is the deco-
herence in NMR due to interactions with nuclear spins in the
same molecule. In NMR the nuclear exchange coupling be-
tween spinsa andb is given by

HSB = JabIWa · IWb. s34d

If the J-coupling is treated as a source of decoherence as
compared to the Zeeman-splittingv0 for an individual spin,
thenJ/v0 can be,10−6 sseef23gd.

For some physical systems a source of decoherence is a
bath of spins, each of which couples to a single qubit. An
example is the electron spin qubit in a single quantum dot
which couples via the hyperfine coupling to a large set of
nuclear spins in the semiconductorf24g. The interaction
Hamiltonian is as follows:

HSB = o
i=1

N

asidsW · IWfig, s35d

whereasid=Av0ucssidu2 andA is the hyperfine coupling con-
stant,v0 is the volume of the crystal cell, anducssidu2 is the
probability of the electron to be at the position of nuclear
spin i. If we bound oiucssidu2ø1 we have thatiHSBi
øCAv0 whereC is a small constantsof order 1d. This may
give a somewhat weak upper bound on the decoherence,
since we are basically adding the effects of each nuclear spin
separately.

A third type of decoherence mechanism exists which is
essentially troublesome in our analysis. This is the example
of a single qubit, or spin, coupled to a bosonic bath. The

interaction Hamiltonian is that of the spin-boson modelf25g

HSB = sz ^ o
i=1

N

sciai + ci
*ai

†d, s36d

where i labels theith bosonic mode characterized by fre-
quency vi. The ith bosonic mode has HamiltonianHBi
=vifai

†ai +s1/2dg. In order to represent a continuous bath
spectrum, one letsN go to infinity. In that limit the coupling
constantsci are determined by the spectral densityJsvd
=oiuciu2dsv−vid. The spectral density can have various
forms, matching the phenomenology of the particular physi-
cal system, an example is the ohmic form in whichJsvd
=ave−v/vc where a is a weak coupling constant that has
physical relevance andvc is a cutoff frequency that is also
determined by the physics. It is clear thatiHSBi has no physi-
cal meaning since it is infinite, the reason being that there are
infinitely excited bath states with infinitely high energy. We
can determine an energy-dependent upper bound on this
norm; using properties of the norm, we can estimate

iHSBuclSBi = Io
i

sciai + ci
*ai

†duclSBI
ø o

i

uciusiaiuclSBi + iai
†uclSBid

ø o
i

uciu
Îvi

Î4kcuHBi
uclSB. s37d

Using the Schwartz inequality we get

iHSBuclSBi ø 2Îo
i

uciu2

vi
kcuHBuclSB

= 2ÎkHBlcSBE
0

`

dv
Jsvd

v
s38d

for some state of system and bathuclSB where the bath
HamiltonianHB=oiHBi

. The idea is that for the physically
relevant states of the bathkHBlc is bounded. The problem
remains that this bound will in general be too poor to be
physically relevant, since this energy bound may be quite
large. Also, for ohmic couplingsfor exampled we have the
integrale0

`dvfJsvd /vg=avc, i.e., linear invc. The cutoffvc

may be quite large and it is more typical to see decoherence
rates depend on logvc as in the non-Markovian analysis of
Ref. f26g for example.

Cooling assumption

Some progress can be made in finding good bounds for
iHSBi in the case of a bosonic environment if additional as-
sumptions about its state can be made. What is troublesome
about the potential nonequilibrium state of the bath is that
expectation values such as TraiajuclkcuSB and Trai

2uclkcuSB

may not be zero since the bath state may not be diagonal in
the energy or boson number basis. On the other hand, inter-
action with other environments, for example, by means of
cooling, will dephase the state of the bathsdue to energy
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exchanged and drive it to a state that is diagonal in the energy
eigenbasis. Under that assumption only the terms
Tr ai

†aiuclkcuSB and Traiai
†uclkcuSB are nonzero. In that sce-

nario, Eq.s37d simplifies to

iHSBuclSBi < Îo
i

uciu2kcuai
†ai + I /2uclSB. s39d

Still, iHSBuclSBi can be very large if some modes of the
environment are highly excited,ni =ai

†ai @1. However, in a
realistic setting, this will be prevented by cooling the bath,
i.e., by constantly removing energy from it. Without making
a Markov approximation, we can thus assume that the occu-
pation numbersni of the bath are upperbounded by those of
a thermal distribution with an effective maximal temperature
Teff. This gives

iHSBuclSBi/ÎE
0

`

Jsvdcothsbeffv/2d/2, s40d

wherebeff=1/kBTeff. We can evaluate Eq.s40d for the ohmic
case usingMATHEMATICA

iHSBuclSBi/Îa

2
Î− vc

2 +

2C8S 1

beffvc
D

beff
2 , s41d

whereC8sxd is the first derivative of the digamma function
Csxd=G8sxd /Gsxd where Gsxd is the gamma function. For
1/beffvc!1 we do a series expansion and obtain

iHSBuclSBi/Îa

2
Îvc

2 +
1

beff
2 Fp2

3
+ OS 1

beffvc
DG .

s42d

Unlike Eq.s38d, this bound does not involve extensive quan-
tities, such as the total energykHBlcSB

of the bath. However,
Eq. s42d still involves the high-frequency cutoffvc because
of the zero-point fluctuations of the bath.

VI. CONCLUSION

Some important open questions remain in the area of
fault-tolerant quantum computation. Most importantly, is
there a threshold result for non-Markovian error models with
system-local Hamiltonians and no further assumptions on the
bath? Is this a technical problem, i.e., how can one efficiently
estimateQB

r , or are there specific malicious system-bath
Hamiltonians that have such effect that the norm of the bad
faults does not become smaller when increasingr? The next
question is whether a better analysis is possible for the spin-
boson model, which is a highly relevant decoherence model.
One would like to evaluate the effect ofHSB in the sector of

physical states, but the characterization of these physical
states is unclear due to the non-Markovian dynamics. For
real systems one is probably interested in a finite memory
time t. t0 which may be simpler to solve. For example, one
can derive the superoperator for a single spin qubit coupled
to a bosonic bath in the Born approximationf26g, however, a
derivation involving more than one system qubit may be too
hard to do analytically.
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APPENDIX: BOUNDS ON FAULT-PATH NORMS

Lemma 6. (fault-path norms).Consider the entire unitary
evolution Qr of a quantum computation on SB. Let∀ q
PS,DSBfqgøl0. We expandQr as a sum over fault-paths
which are characterized by a set of faulty locationsI. A
fault-path operator withk faults has norm bounded by

iEsIkdi ø s2l0t0dk. sA1d

Proof. We do a Trotter-expansion ofQr and obtain a tree
with an infinite number of branches each of which corre-
sponds to a certain time-resolved fault-path. Every time a
fault occurs at some timetm and locationim we append uni-
tary evolutions for the remaining time of the location, since
we do not care that more faults occur in that time-interval,
the location has failed anyway. These time-resolved fault-
paths are characterized by an index setT
=hsi1,t1d ,si2,t2d , . . . ,sik,tkdj where i1, . . . ,ik is the set of lo-
cations of the faults andt1, . . . ,tk label the specific times that
the faults occur at the locations. Every such time-resolved
fault-operator withk faults has norm bounded

iEsTkdi ø S2tl0

n
Dk

. sA2d

Now we need to group these time-resolved fault-paths corre-
sponding to faults at sets of locations. For fixedn faults can
occur in time-intervals of lengtht /n and thus during a timet0
st0n/ td time-resolved faults can occur. This implies that

iEsIkdi ø o
Tk→Ik

iEsTkdi ø s2l0t0dk. sA3d

j
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