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We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models.
The role of error amplitude in our analysis is played by the product of the elementary gatg @meé the
spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model
and the applicability of our analysis.
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I. INTRODUCTION some simple lemmas that will be used in the fault-tolerance

Whether or not quantum computing will become reality analysis and in Se_c. I_ D we disc_uss the overall pictL_Jre of_a
will at some point depend on whether we can implemenfault-tolerance derivation, in particular the parts of this deri-
quantum computation fault-tolerantly. This would imply that Vation that do not depend on the decoherence model. Then in
even though the quantum Circuitry and storage are fau|ty' it iSec. Il we fill in the technical details to obtain the threshold
possible by error-correction to perform error-free quantunyesult expressed in Theorem 1. In Sec. Ill we generalize our
computation for an unlimited amount of time while incurring decoherence model to incorporate more relaxed conditions
an overhead that is polylogarithmic in time and space, seen the spatial structure of the bath and we discuss further
[1-7]. For this “software” solution that uses concatenatedpossible extensions. In Sec. IV we give an overview of all
coding techniques, an error probability threshold of the ordeknown fault-tolerance results including ours and in Sec. V
of 104-107° per qubit per clock-cycle has been given for we discuss several physical systems in which our analysis
the simplest error models, meaning that for an error probabilmay be applicable.
ity below this threshold fault-tolerant quantum computation
is possible. These estimates heavily depend on error model- A Notation and explanation of the decoherence model
ing, the efficiency of the error-correcting circuits, and the ,
codes that are used. Different and potentially better estimates We use the  following  operator  norm: Al
are possible, see, for examp&-10]. Another solution to the  =MaYy=1llAl¥)l| wherel|[)]|=||¢f=y(¥[¢). The following
fault-tolerance problem proposed by Kitaev is to make theProperties will be usedA+B||<||A]|+|B], [U[=1 if U is
hardware intrinsically fault-tolerant by using topological de- unitary, and|AB|<||A|[[B||. An operatorH that acts on sys-
grees of freedom such as anyonic excitations as q{iblls ~ tem qubiti or qubitsi andj (and potentially another quantum

In Refs.[3,4] the threshold result for fault-tolerance is System is denoted a#i[q;] or H[q;, q;]. A unitary evolution
derived for various error models, including ones with expo-for the time-intervatlt to t+t, is denoted adJ(t+ty,1). to is
nentially decaying correlations. However, this general modethe time it takes to do an elementdgne or two qubit gate.
of exponentially decaying correlations does not make directhe identity operator is denoted bande denotes the base
contact with a detailed physical model of decoherence. Suchf the natural logarithm. We will also use the trace-norm
a physical model of decoherence starts from a Hamiltoniadenoted by||A|;=Tr VATA and the classical variation dis-
description involving the environmental degrees of freedontance between probability distributioris and Q: |[P-Q]|;
and the computer “system” degrees of freedom. =3 P(i)-Q()|.

Starting from such a Hamiltonian picture it was argued in  The following assumptions have been shown to be neces-
a paper by Alickiet al.[12] that fault-tolerant quantum com- sary for fault-tolerance and thus we keep these assumptions
putation may not be possible when the environment of thén our analysis.
quantum computer has a long-time memory. (1) It is possible to operate gates on different qubits in

In this paper we carry out a detailed threshold analysis foparallel.
some non-Markovian error models. Our findings are not in  (2) We have fresh ancilla qubits at our disposal. These
agreement with the views put forward in the paper by Alicki ancilla qubits are prepared off-line in the exact computa-
et al, that is, we can derive a threshold result in the non-ional statel00 --0) and they can be used in the circuit when
Markovian regime if we make certain reasonable assumprecessary. They function as a heat-sink which removes en-
tions about the spatial structure and interaction amongst thigopy from the computation.
environments of the qubits. The results of our paper and the In Fig. 1(a) three types of quantum systems are sketched
previous results in the literature are summarized in Sec. I\that differ in function and in the amount of control that we
of this paper. In Sec. | A we introduce our notation and ourcan exert over them. First, there is R, for quantum registers,
assumptions on the decoherence model. In Sec. | B we intrdhat we can control and use for our computation. Second,
duce our measure of error or decoherence strength which weere is A, for ancillas, which are used for error-correction
motivate with a small example. Then in Sec. | C we proveand fault-tolerant gate construction during the computation.
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B Bl may interact with both baths. For simplicitgee[13]) we
....................... B1+B2 assume that the interaction is of the form
R Hsal i 0] = Hsgl 6] + Hsgl a1, (2)
Bz """""""""""""""""""""""""""""""""""""""""""""" where the bath part of eadisg q;] is an operator on the
S d joint bath of qubits gand g. We do not care about the
A time-evolution of the baths except that it has to obey the
T 5 53 “local bath assumption,” i.e., noninteracting qubits have non-
' @ @ interacting baths. The systefregister and ancillaevolution
Hga(t) is time-dependent and represents the fault-tolerant
(@) ; 4, quantum circuit that we want to implemen_t. This evolution is
built from a sequence of one and two qubit gates and, as was
(b said beforet, is the time it takes to perform any such gate.

FIG. 1. Schematic representation of the mo¢®lThe system S
consists of a register R of qubits plus ancillas A that can be reset B. Measure of decoherence strength
during the computation. The system S is coupled to the environ-  Qur results will depend on the strength of the coupling
ment, or bath, B.(b) The decoherence model. Each qubitis  HamiltonianHsg[q;]. There is an additional freedom in de-
coupl_ed to an _individual bath ;BWhen two qubits interact, they termining Hsglq ], namely we can always add a term
may interact with one common bath. al Jq]® | g Wherea is an arbitrary real constant ands the
identity operator. This is possible since it merely shifts the

The systems .R and A taken together are denoted as S f@bectrum(see[14]). Let u; be the eigenvalues dgg. With
system of which single qubits are denoted by the letter Gihis freedom we see that

Clean ancilla registers set {00 --0) are added during the

computation and can be removed after having interacted with Min|Hsg[qi] + el 6] ® 15|l = (max— imin)/2 = Asg[Gi],
(1) other parts of the system S by error-correcting procedures

and (2) the bath B according to some fixed interaction (3

Hamiltonian. the spectral width of the interaction Hamiltoniédivided by

. we will assume that the third system, the bath B, Wh'ChZ). Our analysis will apply to physical systems where one
interacts with the system and ancillas has a local structure., - bound

illustrated in Fig. 1b). We will generalize this model in Sec.
[ll. Every qubit (g;,0,,03,...). of the system has its own Oqg eSS, Asdql=<A\, (4)

%?ter;gztltk?ezwlgbsathé (?;r]]lz gzuirrl]ntgr)]éhf(iegﬂrr‘réec\;v:(ia:t;\r/vacgtql_:_kr)]lés where), is a small constant which will enter the threshold
1 . result, Theorem 1, together witty, the fundamental gate

idea behind this modeling is that the bath is localized mtime. In what follows we will denote\sg ] as Agg or A

space, i.e., is associated with the place where the qubit is . i -
s’?ored. But when qubits interact, trF\)ey need to be bqrough ssuming that the spectral width is the same for each qubit in

together and so they may share a common bath. In the pic=

ture B,+B, at timet+t, are suggested to be the same baths V& Justify the use of this norm in the following way.

SConsider a single qubit coupled to a bath such that both bath

that qubits g and @ interacted with at time;, but in general A )
they may also be different baths. For example, when qubitg‘nd system Hamiltonians are zero_but thgrg exists nonzero
' coupling. To what extent will an arbitrary initial state of qu-

g; and g have to be moved in order to interact, they may seeb. o ; .
: ; : o t and bath change under this interaction? We can consider
a partially new environment at timett,. This distinction ' - S o " ;
D y 0 the minimum fidelity of an initial state/sg(0) with the

will not be important in our analysis. :
Most importantly, in this model, each bath can have arfVolved state at time
arbitrarily long memory; at no point in our derivation will we Frnin() = min(y(t)|4(0))]. (5)
make a Markovian assumption. This implies that, for ex- #0)
ample, the bath Bmay contain information about qubi qt
time t, then interact with bath Bat timet+t, and pass this
information on to bath B etc. The interaction Hamiltonian
of a single qubit gof the systemR or A) with the bath is
given by

For small timedg such thatAggt < 7/2 the minimum fidelity
can be achieved by takingy(0))=1/v2(|¢hman*|tmin)
where|¢maumin are the eigenvectors éfsg with largest and
smallest eigenvalues. Then we have

Frin(t) = cogAt) = 1 — A2%t%/2 + O((At)%). (6)

Note that this fidelity decaincludesthe effects on the bath.

For this reason this fidelity decay overestimates the effects of
with the Pauli-matrices, acting on qubit gandA, is some  decoherence, in other wor@pg(t), ps(0)) = Fin.

Hermitian operator on the bath of the qubjtwghich is not One may compare this fidelity decay with that of other
equal to the identity. During a two qubit gate both qubits decoherence processes, for example, the depolarizing chan-

HselGi] = Ek‘; o] ® Ay, 1
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nel £ with depolarizing probabilityp. For such a channel we sion we may writeUi=1-iHggto/n+O(t3/n?) and omit
haveF(|¢)s,£(|#)(¥))s)=V1-p/2 [15]. Thus, loosely speak- these higher order terms. Let us c@},=UrUlr and B,
ing, At could be interpreted as an error amplitude whose=—i(to/n)UTHsgUlr as in Lemma 1. We thus hay,]|
square is an error probability. <tg|Hsg|/n. Note thatG, is unitary and we have a binary
Thus this brief analysis shows that for some initial stategree of depthn—c and can use Lemma 8 witk=1. This
se(0) the norm of the interaction Hamiltonian measures ex-gives
actly how the state changes due to the interaction. Since our

environment is non-Markovian we cannot exclude such bad IE][=[IB]| < tolHsgll- (12)
initial states, in other words we cannot assume that the de- =
coherence is just due to the interactive evolution of an ini- A similar statement holds when we consider the evolution
tially unentangled bath and system. of two interacting qubits. We have that
C. Error modeling tools Usdl @i, 9] = Uolai, g;] + E[q;, g, (13

The following simple lemma will be used repeatedly in Where||E[q;, o] < 2toAsgla] < 2toh,.
this paper:

Lemma 1Let a unitary transformatiob=U,- --U; where D. Overall perspective: Good and bad fault-paths

U;=G;+B; and the operatof5; and B; are not necessarily
unitary. LetU=B+G where we definB to be the sum of
terms which contains at leaktfactorsB;. Let ||Bj|<e and
thus|Gj|<1+e. We have

Since the bath may retain information about the time-
evolution and error processes for arbitrary long times we
cannot describe the decoherence process by sequences of su-
peroperators on the system qubits. Instead, there is a single

n superoperator for the entire computation that is obtained by
IB]| < <k>6k(1 +e)" k. (7) tracing over the bath at the end of the computation. Thus in
our analysis we will consider the entitmitary evolution of
If G; is unitary, we have system, bath, and ancillas. At tinte 0 bath and ancilla and
system are uncoupled and we may always purify the bath,
IB| < <n>€k_ ®) i.e., find a pure s_tate in a Iarger bath HiIbe'rt space Whiph,
when the extra Hilbert space is traced out, yields the desired
mixed state. We can then assume a pure initial product state
for the combined system and bath, SB. The unitary evolution
of the computation consists of a sequence and/or parallel
application of the unitary gatedU[q;,q;](t+t;,t) and
U[g](t+ty,t). Each such gate, say for two qubits, can be
written as a sum of an error-free evolutiddg[q;, g;](t
+1p,t) and a fault ternE[q;, g;]. Therefore the entire compu-
tation can be written as a sum ovfault-paths that is, a sum
of sequences of unitary error-free operators interspersed with
fault operators. This is very similar as in the fault-tolerance
analysis for Markovian error models, where the superopera-
tor during each gate-timig can be expanded in an error-free
evolution and an erroneous evolution so that the entire su-
peroperator for the circuit is a sum over fault-paths.

The main idea behind the threshold result for fault-
tolerance is then as follows, s¢4]. There aregood fault-
paths with so-calledsparsenumbers of faults which keep
being corrected during the computation and which lead to

Proof. We can think about as a binary tree of depth
such that the children of each node are labeled @itlor B;
at depthi. We prune the tree in the following way; when a
branch ha factorsB; in its path, we terminate this whole
branch with the remaining,- --U,,,. The sum of these termi-
nated branches iB. B can be bounded by observing that
there are(ﬂ) terminated branches each of which have
norm at mostiB;[[4|G;|"* (since each branch is a sequence of
G; transformations interspersed with B; transformations
followed by unitary transformations.

It is easy to prove the followingsee also Ref[16]).
Lemma 2 Consider a time-intervdlt,t+t,] and a single
qubit ge S which does not interact with any other qubitin S
at that time. The time-evolution for this qubit is given by

some unitary evolutionU[q] involving its bath B. Let
Uoglql=Udq]® Ug be the free uncoupled evolution for this
qubit. We can write

U[q] = Ug[al + E[q], (9) (approximately correct answers of the computation; and
_ _ there arebadfault-paths which contain too many faults to be
whereE[q] is a fault-operator with norm corrected and imply arashof the quantum computer.
_ Now the goal of our fault-tolerance derivation which is
IELall < tolHselalll = toAsela] < toko. (10 completely analogous in structure as the ongdiris to show

Proof. We drop writing the dependence on qubit q for thethe following.
proof. For the qubit evolution in the interval, using the Trot-  (A) Sparse fault-paths lead to sparse errors in the compu-

ter expansion we can write tation. This fact uses the formal distinction between faults
) N N that occur during the computation and the effects of these
U = lim IT5, (USU U, (1D faults, the errors, that arise due to the subsequent evolution

n—o

which can spread the faults. The fact that sparse fault-paths
whereUjp is the time-evolution for K=S, B or coupling SB give rise to sparse errors is due to fundamental properties of
during the time-interval,, of lengthty/n. Now in this expan-  fault-tolerant error-correcting circuitry, namely that there ex-
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ists error-correcting codes and procedures that do not spread
faults too much. It is independent of the choice of decoher-
ence model, and can be applied to any model where one can
make an expansion into fault-paths. See Lemma 3.

(B) Sparse errors give good final answers. This is a tech-
nical result whose derivation may differ slightly in one or the
other decoherence model, but which is intuitively sound for

all possible decoherence models. See Lemma 4. . . : :
(C) The norm of the operator corresponding to all bad FIG. 2. Every single or two-qubit gate G in the circi}_; gets
replaced by an error-correcting procedure E followed by a fault-

nonsparse fault-paths is “small.” This result depends cru- . . . ) X

- - h . tolerant implementation of G, Gfaulttolpossibly involving

cially on the decoherence model that is chosen, in particula ncillag

the spatial or temporal correlations that are allowed. Second, '

it depends on the strength of the errors, that is, only for small Definitions from Ref. [4]:

enough strength below some threshold value will the norm of (1) A set of qubits inM, is called an s-block if they

the bad fault-path operator get small. See Sec. Il B. originate from 1 qubit inVl,_s. A s-working period inM, is a
(A),(B)(,©)= When thebad operator norm is small, the time interval which originates from one time-step i _g.

answer of the computation is close to what the good faultAn s-rectangle inM, is a set of locations that originate from

path operator yields which is the correct answer according t@ne location inM, _.

item B. See Lemma 4 and Theorem 1. (2) Let B be a set ofr-blocks in the circuitM,. An
Another small comment about our model is the following: (T, 1)-sparse set of qubits Ain B is a set of qubits in which

In the usual model for error-correctidgeee Ref[6]in [17]),  for everyr-block in B, there is at most orfe - 1)-block such

measurements are performed to determine the errofhat the set Ain this block is ndtr-1,1)-sparse. A0, 1)-

syndrome or the correct preparation of the ancilla statessparse set of qubits i, is an empty set of qubits.

Since we prefer to view the entire computation as a unitary (3) A set of locations in ar-rectangle is(r, 1)-sparse

process, we may replace these measurements by coherdyien there is at most (r —1)-rectangle such that the set is

quantum operations. In the error-correction with measurefot (r—1,1)-sparse in thatr-1)-rectangle. A fault-path in

ment procedures it is assumed that faults can occur in th¥, is (r,1)-sparse if in each-rectangle, the set of faulty

measurement itself or in the quantum gate that is performetpcations is(r,1)-sparse.

that depends on this measurement record, but the measure-(4) A computation code C has spresd one fault which

ment record by itself is stable since it is classical. If weoccurs in a particular 1-rectangle affects at mogubits in

replace measuring by coherent action for technical reasons gach 1-block at the end of that 1-rectangle, i.e., causes at

this derivation, it is then fair to assume that the qubit thatmosts errors in each 1-block.

carries the measurement record is error-free, in other words it (5) Let Ac be the number of locations in a 1-rectangle for

does no longer interact with a bath. This modeling basicallya given code C.

allows the standard fault-tolerance results in item A ex- We state the basic lemma about properties of computation

pressed in Lemma 3 to carry over in the simplest way to oucodes which was proved in Ré#] (with a correction.

model. Lemma 3 (A: Lemma 8 in [4] with a correctiar)et C be
a computation code that can correct 2 errors and has spread
Il. THRESHOLD RESULT s=1. Consider a computatidvi, subjected to dr, 1)-sparse
A. Nomenclature fault-path. At the end of each-working period the set of

errors is(r, 1)-sparse.

Thus for simplicity we will be using a quantum computa-
tion code that encodes one qubit and can correct two errors
and has spreas=1. We denote the entire unitary evolution
of M, including the bath a®'. We may writeQ"=Qg+ Qg
whereQj is a sum ovegood (r,1)-sparse fault-path opera-
locationi we will write U[q, qp]=Uq[i] instead of enumer- tors andQg contains thebad nonsparse terms. A fault-path

ating the qubits. For fault-tolerance one constructs a fam”)?perator‘.ESB that |s(r,;)-sparse IS a sequence of free evolu-
of circuits M, by concatenation. That is, we fix a computa- tions L_JO['] for all locations excepF that in everyrectangle
tion codeC (see definition 15 in Ref4]), for example a CSS th(_are is ar,1)-sparse set of locations where a fault operator
code, encoding one qubit intsay m qubits[18]. We obtain  ELi] oceurs. _ _ _ _
the circuitM, by replacing each location in the circiit, by Definition 1 (Operators in the interaction picturel.et
a block of encoded qubits to which we apply an error-Yo(tz:t1) =Us(tz,t;) © Ug(tz,t;) be the free uncoupled evolu-
correcting procedure followed by a fault-tolerant implemen-tion of system and bath in the time-interyal, t,]. We define
tation of G, see Fig. 2. Repeated substitution will give us & fault-operatoiE(t,,t;) in the interaction picture as
circuit M, at concatenation level - T

Essential are the following definitions and a lemma taken Btz 1) = Uoltz t)EUg(ta ). (14
from Ref.[4] which define sparseness of a set of locationsThe interpretation is theE(t,,t;) is the spread of a fauE
and error-spread of a code: that occurs at; due to the subsequent free evolution.

Let the basic error-free quantum circuit denoted Ny
consist ofN locations[4]. Each location is given by a triple
({g}, G,t) where{qg} denotes the qubit®ne or two at most
involved in some gate GG could bel) at timet in the
quantum circuit. In the followingE[i] or U[i] will denote
operators that involve location i.e., if ¢; and g interact at
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Then it is simple to see the following: the error correctiorE,(tg,t;) acts asl on the code space

Proposition 1 (Error spread in the interaction picture) when the ancilla used for error-correction is set@6 - -0)
Consider a quantum circuiM. Let Uy(tg,t;) be the un- and acts ag7 on this ancilla and the bath. The eri@és will
coupled evolution forM. Faults occur at a set of “time- not be corrected and may still be presémit will not have
resolved” locations spread to more qubits in the block due to the spread proper-

T={(i1t)).(inty) (it} ties of the code; that is 'us)sdfter error-correction. Thus in
LR - ke total we can write for this process thgj(tg,t;) acts ad on
whereiy, ... ix is the set of distinct locations of the faults the code space, whereBs(tg,t,) is an operator that acts on
andt,, ... t, label the specific times that the faults occur atthe code space as at most one error per block.
the locations. LeEgg(7) be a particular fault-path operator ~ Alternatively, both faults could occur prior to error-
in which at every faulty locatiori,t) e 7 we replaceU[i] correcting so they can both be corrected by our code. This
by a fault-operatoE[i]. We have implies that bottE;(tg,t;) andE,(tg,t,) act asl on the code-
. . ) space. Note that after the first fault the ancilla will be par-
Ese(DUo(tr.t) = E[i(tr,t) - E[i1](tet). (15 tially filled (i.e., not be00 --0)) but since the code can cor-
rect two errors there is still space to put the second error
yndrome in. However, a third operatBg(tg,t;) would no
onger act ag on the code-space since the code cannot cor-
rect three errors.

In other words, with these examples we can see how
Lemma 3 can be translated in terms of the sparseness of the
the definition of fault operators in the interaction pictulli. errors in the interaction_ pictL_Jre, e, the_ sparseness of places

where they act as nonidentity on the final encoded state of

Now we include error-correction and differentiate be- h ist bits. In th t] dt i
tween the ancilla systems A used for error-correction whicli € register qubits. In the next lemma we need to consider

may contain noise and the registers R in which the error r;eteffictthof such s;tJars%:‘.au.It-pt)ﬁth ct:ptera‘?gfi?]on the flntal b
remain sparse. Note that all these ancillas are in principl%ae of the computer. 1his 1S the state of the computer ob-

We note that the system part EgBUE is | everywhere ex-
cept for the qubits that are in the causal cone of the fault
locations, i.e., the qubits to which the errors potentially hav
spread.

Proof. This can be shown by insertingl
=U{(te,t)Uo(te, 1) in the appropriate places and then using

discarded after being used, but we may as well leave the ined after fault-tolerant decoding which is as follows. The
around. LetK|c be the restr’iction of the operatét to vec ault-tolerant decoding procedure for a single level of encod-
. C =

tors in the code-space @, i.e., K|c=KP: whereP is the ingt t;';ﬁs a gode mrtd;b> anq”‘]‘copies”(byhd“oing ,,CNOdT
projector on the codespace. gates the codewordm times. Then on each “copy” we de-

Let us consider a fault-path operatBgg representing a tirmlne what state_ll:].encodes dand .thzn we take 'ghelmajr? rity
single faultE at timet on some block that is subsequently of th€ m answers. 1his procedure is done recursively when

corrected by an error-free error-correcting procedure. Lefore levels of encoding are .USEd'

[IN) be the initial state of the computer, bath and ancillas and In the fault-tolera_nt deco_dmg procedure faullts can oceur

U(te,t) be the perfect evolution. We have on the code words, i.e., as incoming fa.ults., during the copy-
O ing procedures and during the determination of what is en-

EsglIN) = EsgU{UolINY = EspUd|vic(te)), (16)  coded by the code word. The last procedure will usually be a

. . __conversion from a quantum state to a classical bit string
wherelyc(te)) is the final perfect state of the computer, prior gjnce this will be the most efficient. This implies that the step

to decoding and therefore in the code-spdeg is the se-  of aking the recursive majority of these bits is basically
quenceUo(tr, )EU(t,to) where Ug(tr,t) includes the error  gporfree since it only involves classical data. In the next
correction operation. In other words, in the interaction pic-lemma we model this by coherent quantum operations that

ture, we can write output superpositions of decoded bit strings followed by an
EglIN) = E(te, )| ¢ic(te)). (17) ?r:;%zfﬁfs measurement that takes the recursive majority of
The error-correcting conditionésee[15], par. 10.3 imply Lemma 4 (B: Sparse faults give almost correct answers)

that when acting on the code span@ an ancilla state setto | et Q'=Q5+Qf be the unitary evolution oM, and let

|00 --0) the operatorE(te,t) will be E(te,t)=1[c®(DNas  ||Qy<e<1/2. LetPy(i) be the output probability distribu-
where J is some arbitrary operator on the ancilthat re-  tijon under measurement of some set of qubits of the error-
ceives the error syndrome in the error-correcting procgdurefree original computatio,. Let P(i) be the simulated out-
and bath. In Eq(17) the final error-free state has all ancillas put distribution of the encoded Computatiolmr with

set to|00 --0) and the system state is in the code-space angdyolution Q'". We have

thus the error acts dson the system.

Similarly, let Egg contain two faults at times; <t, that
have not spreadsay and are then corrected by a perfect
error-correcting procedure. We have Proof. The initial state of the computer i§N)gag

_ =|00: --0)ga ® |INg) for some arbitrary statéNg). Let Uy be

EsellN) = Ealte. ) Exlte.ty)|4c(te)). 18 e error-free evolution oM, including the final decgding
Let us assume, for example, thBf occurs prior to error- operation. Thus letUg|IN)gag=|OUTp)gr® |RESTas. Let
correction andg, occurs during error-correction. Then due to Q'|IN)gag=|OUT)grag and QgglIN)ras=|0UTg/c)ras. We

IPo— Plly < \2€+ 16e. (19)
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will drop the label RAB from now on. The norm ¢®UT) P.|OUT.) = E UMtk Y e ... (g yent
will be denoted agOUTg|. We have {OUTe) akl"""“ﬂge se( Vo ko e

1 =[lQ"IN) =< [|QG[INY] + [[QB[IN)II, (20 ® [RESTag, (26)
so that|[OUTg||=1-[|Qg|IN)|=1—-€. On the other hand Which can be written aszkl,...,KNQ’d(/fk) for some normalized
|Qg/=Q -QE=1+e. state|i)rag. This implies that the second term in EQ4)

Let G be the set of(r,1)-sparse fault-paths. We have can be bounded as
Q=27ccEsa(7) whereEgg(7) is the fault-path operator of a

r 2
(r,1)-sparse ffault-path labeled by location and time index sefpiot - Py, = > |ak1’---v'<w|2 M -1
7. We can write k [ouTd|
r 2
OUTy) = 3 Ece(DUFI0UTy): ® [REST 5. (21 < o,y [rmax] 2Bl e
7e6 kv ] louT| (1-¢
By the arguments above and the fundamental Lemma 3 we (27

know thatEgg(7)U] is | everywhere except on(a, 1)-sparse
set of qubits. Letw be the number of output qubits ®4,.
The ideal stat¢gOUTy)g has the property that all qubits in an
r-block have the same value in the computational basis, i.e.,

> a’il,...,iw|il>®mr"' |iw>®mr, (22 ' . . .
Lo Consider the evolutio@" which can be viewed as a se-

h is th ber of aubits in a 1-block. The final quence of unitary evolutions, one for eachectangle, since
wherem is the number of qubits in a 1-block. The final step o its in different rectangles do not interact. The number of

of the computation is a measurement of all output qubits thal‘bcations inM, is N. The computatiorQ' is bad when at
takes the recursive majority on the block to get the ﬁ”alleast one”—rectoangle'is bad, or using Lemma 1

output stringi of lengthw with probability P©°'(i). We model
this measurement using POVM elemefis -2, E,=1. Since |Q&ll = NIIRG[ RGN, (28)

not all of thesew output bits may be relevant output bits of

r r .
Mo, we may use the fact that trace-distance is nonincreasinghelr?_RB srn]fj R are the ?OOdl ar11_dh bad _tpa_r:s ‘;Ir 'ghe Ileltary
over tracing[15] so that volutionR" for somer-rectangle. The unitarity dR" implies

that we can boundlR;|| < 1+||Rj/. In each rectangle we can
[Po = Pll, < [[PE* - Py, (23)  view the entire evolution as a sequence of unitary evolutions,
o ot one for each(r—1)-rectangle. Note that we are again using
where  P(k)=TrEJOUT)(OUT|rag  and  Pg(K)  the fact that noninteracting qubits have noninteracting baths.
=Tr E,JOUTo)(OUTglg. Let us also defin@’g, the distribu-  An rrectangle is bad when there are at least two
tion of outcomes if the state of the computer would be the(r-1)-rectangles which contain sets of faulty locations

normalized statdOUTg)=|OUTc)/||OUTg|. The triangle  which are notr-1,1) sparse. This implies, using Lemma 1
inequality and the properties of the trace-norm imply that  aqgain, that

using the bounding inequalities ¢fg|| and |[OUT|. All
bounds put together, using< 1/2, give the result, Eq4).H

B. Step C: Nonsparse fault-paths have small norm
|OUTo) =
i

Ptot_Ptot < Ptot_Ptot + ]PtOt—]PtOt
el = e el ” ;’”1 o o ||Rg||s(AC)||R;1||2||R:;1||AC-Z. (29
< ||oUTY(OUT] - [OUTEOUTY] [, + [P - P, 2

(24)  where we can use th#iR; |<1+|R; Y. Whenr=1,R} is a
, . . unitary operation and thufRL|=1. This recurrence im is
Here the first term can be bounded, using the relation of th?dentic):/al E)o the one in Lgﬂrr??rua 11 in Rd#] and thus the
trace norm to the fidelitf(y, ¢) =[(¢/| ¢)| [15], as solution and results are the same if we replgca Ref.[4]
by Noto- Thus the critical error threshold value is

1

eAc(Ac-1)
Here we can observe a difference with the simplest error

Now consider the second trace norm on the right-hand sideodel with error probabilityp for which the critical value is

of Eg. (24). We note that all states that are linear combina—pczl/(AZC) [4]. The dimensionless quantikyt, plays the role

tions of (r,1)-sparse error sets applied to the stateof anamplitude see Sec. V, which implies that this threshold

k@™ - k™ will give rise to the measurement outcome value may be more stringent than in the simple probabilistic

k since we are taking majorities. We can moHgk P, where  error model(see also the critique by AlicKil9] on our re-

P, is the projector onto the space of computational basisultg. However, we believe that this analysis is too course to

states that give rise to the majority output strikagrhus we  really give information about the value of the threshold. The

have fact is that in practice, baths do not have infinite memory

[|OUTYOUT| - |OUTEXOUTY |4
< \1-F(OUT,0UTY)? (oto)c =
< V1 -[|OUTg? < V2e- €. (25

(30)

012336-6



FAULT-TOLERANT QUANTUM COMPUTATION FOR.. PHYSICAL REVIEW A 71, 012336(2005

times since they are coupled to many other degrees of freavith k faults have a norm bounded B§9\qto)¥ (see the Ap-
dom. Representing the coupling between bath and system @&ndi¥. This bound is not strong enough by itself to derive
a pure coherent evolution was needed in this analysis to dedat ||Qf| becomes arbitrarily small for sufficiently small
with the non-Markovian dynamics; however, we do not ex-\,t,. We find that there are technical and potentially funda-
pect this formal procedure to give rise to aptimal error  mental problems in the derivation of step C, for the most
threshold. general local Hamiltonian model boih the Markovian case
The idea of the remaining derivation given in Ref] is  as well as in the non-Markovian case. The problems are due
to show that whemto<(\oto). for large enough concatena- to the fact that all qubits of the computer potentially couple
tion level r, |Qg|<e for arbitrary smalle. Lemma 4 then at a given time to the same bath which was prevented in the
tells how much our quantum computation errs from thederivation of Theorem 1 by assuming that “noninteracting
error-free computation. Summarizing we get the following,qubits have noninteracting baths.” The problem is basically
as in Ref[4]. due to the fact that the unitary evolution of a working period
Theorem 1 (Threshold theorem for local non-Markoviancannot be written as a product of unitary evolutions for each
noise) Let N be the number of locations of an error-free rectangle in the working period since different rectangles
quantum computatioM that outputs samples from a prob- may share their bath.
ability distribution’. There exists a quantum circlt’ sub- We thus need to consider restricted models that are still
jected to noise according to the Hamiltoniblgg and bath  physically very relevant:
HamiltonianHg that obeys the “noninteracting qubits have
noninteracting baths” assumption which outputs the prob- Clustered qubits at encoding levelr =1

ability distribution P’ such that . . . .
y We can generalize the model in Sec. | A, i.e., noninteract-

[P" =Pl <, (31 ing qubits have noninteracting baths, to one in which a clus-
. ter of qubits can share a bath. The model is depicted in Fig.
whenAsgto<1/[eAc(Ac-1)] andAc is the number of loca- 3 \ve will assume that qubits that are contained in a
tions in a 1-rectangle of acomputation code C that can 1 _rectangle oM, may share a common bath whereas qubits
correct two errors and has spresell. The number of loca- j, gifferent 1-rectangles do not share a bath. We imagine that
tions inM’ is N polylogN/ . _ , baths are attached to physical locations, so that the interac-
Proof. This follows from the basic results in Re#t] and  jon regions of different-rectangles are physically separate.
Lemma 4 and step C above. It was proved in R€ffor \oto  This means that from one 1-working period to the next one,
below the threshold\oto) in Eq. (30) when the concatena-  qupits have to be moved around, i.e., qubits that participate
tion level r=c, log[log(N/€’) +c,]+c5, for constantst;, ¢, in one 1-rectangle have to be brought together.
andc; we have||Qgl|<¢€’. So we choos#’'=M,, the com- Let us for the moment neglect the machinery that is nec-
putation at_this concatenation level which implies that essary to move qubits around. Then we can observe that the
[P =P||,=< V2€' +16¢' =e. The number of resourcedime  entire computatiorM, can be viewed as a sequence of uni-
and space, related #:) in M’ scales exponentially, i.e., the tary gates each involving a single 1-rectangle. In the
number of locations iM, is NA.. With the dependence of  1-rectangle we cannot decompose the evolution as a se-
on N and €' this implies the polylogarithmic overhead in quence of unitary transformations for each location; but at
terms ofN and ve. B this lowest levelr=1 it is simple to derive a bound on the
bad part Ré of the unitary operatiofR. Given this bound we
can insert it in the previous recurrence of E29) and deter-
[ll. EXTENSION TO DECOHERENCE MODELS mine a threshold which is the same as before. Here is the
WITH CLUSTERED QUBITS bound onRé:

1-Rl 4 RL ; ;
In the most general noise model we start with a Hamil- Lemma 5 Let R =Ry +Rg be the unitary transformation

1 .
tonian description of system and bath. We will assume thag]c :raltgfst?zgliguesrsghi ae‘:‘;trcr)]r %ng;ﬁgjf;;zgltt\;v%altgca_
such Hamiltonians are 1-system local, that is, the interactio (F))ns With’féullis Then P
Hamiltonian between system and bath is a sum of terms eac '
of which couplgs esing!equbit to some part of the bath. This IR < 2(Actoho)? (32)
covers many interaction Hamiltonians in systems that are . .
being considered for quantum computatieee[20]). and||Rg/|< 1 +||Rg]- . _

We have seen that basically the only place where the Proof. We do a Trotter expansion fd" as in Lemma 6
noise model enters the derivation of fault-tolerance is in Sec2nd obtain a tree with infinite depth. We combine branches of
Il B, i.e., the derivation that the total amplitude/probability/ the tree in the following way(1) After a location has be-
norm for nonsparse fault-paths at concatenation leygles ~ come faulty we append the full unitary for the remaining
(doubly exponentially fast im) to zero when the initial error  time of the location ang?) if two faults have occurred at two
strength is below the threshold. Locality of the interactiondifferent locations we do no longer branch the tree and just
Hamiltonian is an importarand necessajyngredient in the ~ @ppend the entire remaining unitary transformation to that
derivation of fault-tolerance since it implies—without any branch. In this way the norm of every time-resolved branch
further assumptions on the structure of the bath or(tlog)- ~ With at least two faultsE,«(7) is bounded by|Ex+(7)]|
Markovian character of the system—that fault-path operatorss (2\qt,/n)%. There are(ACtz"n/t) such branches and thus
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Bath of cluster 1 Bath of cluster 1+2
3 E = =
= — E =
Gfaulttol3
Bath of cluster 2 E g
5 E =
[te+t ] [te+24 ]

FIG. 3. Schematic representation of a decoherence model where clusters of qubits can share a common bath. Logical qubits 1 and 2 are
encoded once in a block of qubits. In the original circuit these qubits first undergo single qubiGgated G, and then interact ilG3. In
encoded form this implies three 1-rectangles that each take some;tithese are denoted by the boxes with fat lines in the figure. Each
1-rectangle or cluster has its own bath. These baths may change over time, that is, the bath of cluster 1 may evolve or change and not be the
same as the environment that this block of qubits sees later.

ton/t
ACZO ) < 2(Actoho)?. (33 TABLE I. A check (,) indicates that a fault-tolerance result ex-

ists whereas a question mafR indicates that it is not known to
] exist so far(neither has it been disprovedlhe results for non-

A physical example of this decoherence model is the proMarkovian baths assume a 1-system local interaction Hamiltonian
posal for scalable ion-trap computatif®l]. A few qubits that can be bounded in norm. They_ aI'_so assume th_at we can do
are stored in an ion-trap where they may share a commoff0-qubit gates between any two qubits in the cir¢thiat is, we do
bath. The states of qubits can be moved around to let thefit ke physical locality constraints into accouiihe assumptions
interact. A small cluster of ion-traps may be used to carry oufn the structure of the system-bath interaction and the bath Hamil-

S . onian are given by the three columns. Single location baths implies
the fault-tolerant circuits and error-correcting at lewell of . . ;
encoding that the interaction and the baths are constrained so that for each

. . . . ., elementary time-intervalclock-cycle [t,t+tg] the following con-
. The |ssu§ of moving qu',t state; .around Is not ermrelydition is obeyed: qubits that do not interact can only interact with
trivial and will be addressed in detail in a future pap22]. baths which do not interact, see FigblL Note that the particular
baths with which the qubits interact may change over time. Cluster
location baths is the extension of this model covered in Sec. Il
IV. OVERVIEW where a cluster of qubits can share the same bath, see Fig. 3. In the
last column there is no constraint on the bath.

IRy < (Zxot/n)z(

We would like to summarize the known results, including
the ones in this paper, on threshold results for different de-
coherence models. The simplest model is one in which we
assume that each location undergoes an error with probabil-
ity p and undergoes no error with probability p-~This is a Cluster
specific example of a Markovian model in which every lo- Single location
cation has its own separate environment, i.e., we have location  baths  Arbitrary
“Single location baths,” see the upper left entry in Table I. baths atr=1  baths
Generalizations of this model exig3,4]; in these models a Temporal Markovian within J J 2
superoperatoiS(p) =So(p) +E(p) Where Sy corresponds o corelations gate-timet, ‘
the error-free evolution ané to the erroneous part, is asso- Non-Markovian | ”
ciated with each location. Again this corresponds to the up- with finite memory ' '
per left entry in the table. This model has been generalized to time 7>t,
allow for more general correlations in space and time in the

Spatial correlations

; . . Non-Markovian J J ?
following manner._ln Ref[4] fault-tolerance was derived in with unlimited memory
a model where it is assumed that the probability for a fault- time

path withk faults is bounded b p‘(1-p)N ¥ whereN is the

012336-8



FAULT-TOLERANT QUANTUM COMPUTATION FOR.. PHYSICAL REVIEW A 71, 012336(2005

total number of locations in the circuinote the difference interaction Hamiltonian is that of the spin-boson moj&s]
with Eq. (A1) in the Appendi¥. Similarly, in Ref.[3] fault-
tolerance was derived under the assumption that a fault-path Heaz o0 S (ca +c'a)
with at least kfaults has probability bounded b@p* for s8~ 9z —t & TGa),
some constart. Let us call these conditions the exponential
decay conditions. Note in Table | that it is not known Wherei labels theith bosonic mode characterized by fre-
whether one can derive fault-tolerance for a entirely Markov-guency ;. The ith bosonic mode has HamiltoniaHg,
ian model butwith extended spatial correlations between the:wi[a17a1-+(1/2)]. In order to represent a continuous bath
baths, i.e., for every clock-cycle we have a superoperator thapectrum, one letsl go to infinity. In that limit the coupling
acts on all qubits of the system; the point is that it is not cleaconstantsc; are determined by the spectral densityw)
whether such a superoperator would obey some sort of ex=3,|c|?5(w—w;). The spectral density can have various
ponential decay conditions. forms, matching the phenomenology of the particular physi-
cal system, an example is the ohmic form in whidfaw)
=awe ““c where « is a weak coupling constant that has
V. MEASURES OF COUPLING STRENGTH physical relevance and, is a cutoff frequency that is also
AND DECOHERENCE determined by the physics. It is clear thjbitsg| has no physi-
In our analysis the role of error amplitude is played by thepa! meaning _since ILis infinite, t_he reason be_ing that there are
infinitely excited bath states with infinitely high energy. We

dimensionless numbeigt, which captures the relative can determine an enerav-denendent unper bound on this
strength of the interaction Hamiltonian as compared to the gy-dep PP

systeT Hamiltonian. It is this quantityty, that should be horm; using properties of the norm, we can estimate
O(l.(T ) as was determl_ned for some codes. .In a purely Mar- Hselsdl = | (ciay + C:a1'T)|¢>SB

kovian analysis we typically replade, by an inverser, or i

T, time and this may give a more optimistic idea of the

regime of fault-tolerance. Let us consider a few examples of <> |Ci|(||ai|¢>ss|| + ||a1'T|<ﬂ>ss||)
decoherence mechanisms and see how sensible it is to use ‘

Agg as a bound for decoherence. A good example of a non- |cil

Markovian decoherence mechanism is a small finite dimen- <> = VA YHg [)sp- (37
sional environment localized in space, for example, a set of PN

spins nearby the system of interest. An example is the decajsing the Schwartz inequality we get

herence in NMR due to interactions with nuclear spins in the

N
(36)

same molecule. In NMR the nuclear exchange coupling be- |cil?
tween spinsa andb is given by ||HSB| ‘/’)SBH <2 2 j(‘MHBW»SB
I |
Hss=Japla  Ip- (34) ? o Jw)
o =24 /(He)yq, f do—— (39)
If the J-coupling is treated as a source of decoherence as 0 )

fﬁg%ﬁfodcgntgiwzigT?QezF[)gg]I?% for an individual spin, for some state of system and t_)altzmSB where the bath
For some physical systems a source of decoherence is&@miltonianHg=2iHg. The idea is that for the physically
bath of spins, each of which couples to a single qubit. Anélevant states of the batfilg), is bounded. The problem
example is the electron spin qubit in a single quantum dotémains that this bound will in general be too poor to be
which couples via the hyperfine coupling to a large set ofhysically relevant, since this energy bound may be quite
nuclear spins in the semiconductf24]. The interaction large. Also, for ohmic couplingfor example we have the
Hamiltonian is as follows: integral [(dw[J(w)/ w]=aw,, i.e., linear inw.. The cutoffw,
may be quite large and it is more typical to see decoherence

s o rates depend on log, as in the non-Markovian analysis of
Hsg =2 a(i)o - I[i], (35 Ref.[26] for examplec.
i=1

N

whereal(i)=Avg|(i)|> and A is the hyperfine coupling con-
stant,v, is the volume of the crystal cell, arjg(i)|? is the
probability of the electron to be at the position of nuclear Some progress can be made in finding good bounds for
spin i. If we bound Zj|¢4i)?<1 we have that|Hgsg| |Hsgl in the case of a bosonic environment if additional as-
< CAv, whereC is a small constanfof order 1. This may  sumptions about its state can be made. What is troublesome
give a somewhat weak upper bound on the decoherencepout the potential nonequilibrium state of the bath is that
since we are basically adding the effects of each nuclear spiexpectation values such as &a;|#)(#{sg and Tra?| ) (ss
separately. may not be zero since the bath state may not be diagonal in

A third type of decoherence mechanism exists which ighe energy or boson number basis. On the other hand, inter-
essentially troublesome in our analysis. This is the examplaction with other environments, for example, by means of
of a single qubit, or spin, coupled to a bosonic bath. Thecooling, will dephase the state of the bdtfue to energy

Cooling assumption
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exchanggand drive it to a state that is diagonal in the energyphysical states, but the characterization of these physical
eigenbasis. Under that assumption only the termstates is unclear due to the non-Markovian dynamics. For
Tra'a|¥)(lss and Traal|y)(yss are nonzero. In that sce- real systems one is probably interested in a finite memory
nario, Eq.(37) simplifies to time 7>ty which may be simpler to solve. For example, one
can derive the superoperator for a single spin qubit coupled
[Hsel)sd| = \/2 lc|Xylala + 112y sp. (39)  to abosonic bath in the Born approximati@6], however, a

i derivation involving more than one system qubit may be too
hard to do analytically.

Still, |Hsgl)sd| can be very large if some modes of the
environment are highly excitedy:a17ai>1. However, in a
realistic setting, this will be prevented by cooling the bath, ACKNOWLEDGMENTS
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[Hsg|hsell £ \/f J(w)coth(Berw/2)/2, (40)
0 APPENDIX: BOUNDS ON FAULT-PATH NORMS

whereBq=1/kgTes. We can evaluate E@40) for the ohmic

> Lemma 6. (fault-path normsiConsider the entire unitary
case USINGUATHEMATICA

evolution Q" of a quantum computation on SB. Létq
1 € S, Asg ql<\y. We expandQ" as a sum over fault-paths
) which are characterized by a set of faulty locatidghsA

Z\If’(

IHegl ¥sdll S \/E \/_ w2+ & (41)  fault-path operator wittk faults has norm bounded by
- 2 Beff

where WV’ (x) is the first derivative of the digamma function

W(x)=I""(x)/T'(x) whereI'(x) is the gamma function. For Proof. We do a Trotter-expansion @' and obtain a tree

IE@II < (2\gto)*. (A1)

1/B0w.<1 we do a series expansion and obtain with an infinite number of branches each of which corre-
sponds to a certain time-resolved fault-path. Every time a

a o, 1| 1 fault occurs at some timg, and locationi,,, we append uni-

IHseldsdll £ \/ 5 \J@c+ | = +O : . % and location, we append un|
~ N2 Berrl 3 Befrwc tary evolutions for the remaining time of the location, since

(42) we do not care that more faults occur in that time-interval,
the location has failed anyway. These time-resolved fault-
Unlike Eq.(38), this bound does not involve extensive quan-paths are characterized by an index sefl”

tities, such as the total energMB>¢SB of the bath. However, ={(i,,t;),(i,,t),... (i,t)} wherei,, ... i is the set of lo-
Eq. (42 still involves the high-frequency cutofb. because cations of the faults and, ... .t label the specific times that
of the zero-point fluctuations of the bath. the faults occur at the locations. Every such time-resolved

fault-operator withk faults has norm bounded

VI. CONCLUSION "
2thg
Some important open questions remain in the area of [E(TI < (T) : (A2)

fault-tolerant quantum computation. Most importantly, is
there a threshold result for non-Markovian error models withy;5\v we need to group these time-resolved fault-paths corre-
system-local Hamiltonians and no further assumptions on thgponding to faults at sets of locations. For fixetaults can

bath? Is this a technical problem, i.e., how can one efficiently .. in time-intervals of lengtt'n and thus during a timg
estimate Qp, or are there specific malicious system-bath ; /t) time-resolved faults can occur. This implies that
Hamiltonians that have such effect that the norm of the ba

faults does not become smaller when increasih@he next

k
guestion is whether a better analysis is possible for the spin- BT = ng IEZI = (2xoto)". (A3)
boson model, which is a highly relevant decoherence model. Kk
One would like to evaluate the effect blfsg in the sector of [ |
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